Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
mBio ; 13(5): e0223622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154185

RESUMO

Many biotrophic and hemibiotrophic fungal pathogens use appressoria to directly penetrate the host plant surface. In the cucumber anthracnose fungus Colletotrichum orbiculare, differentiation of appressoria requires a proper G1/S cell cycle progression, regulated by the GTPase-activating protein complex CoBub2-CoBfa1 and its downstream GTPase CoTem1. To explore the mechanisms by which the CoTem1 cascade regulates plant infection, we screened for CoTem1 interaction factors and identified a Niemann-Pick type C2 homolog (CoNpc2). Niemann-Pick type C proteins NPC1 and NPC2 are sterol-binding proteins required for sterol export from lysosomes (vacuoles) in humans and yeasts. We showed that CoNpc2 colocalized with CoNpc1 in late endosomes and vacuoles and that disruption of its gene resulted in aberrant sterol accumulation in vacuoles and loss of sterol membrane localization, indicating that NPC proteins are engaged in sterol transport in C. orbiculare. For appressorium infection, sterol transport and proper distribution mediated by CoNpc1 and CoNpc2 are critical for membrane integrity and membrane curvature with actin assembly, leading to penetration peg emergence and appressorial cone formation. Our results revealed a novel mechanism by which NPC proteins regulate appressorium-mediated plant infection. IMPORTANCE Fungal morphogenesis requires accurate cell cycle progression. Two-component GTPase-activating protein (GAP) CoBub2-CoBfa1 interacts with downstream GTPase CoTem1 and is required for G1/S progression to establish plant infection in Colletotrichum orbiculare. To understand the pathogenicity related functions of CoTem1 downstream, we identified a Niemann-Pick type C2 homolog (CoNpc2) as a novel physical interaction factor with CoTem1. Whereas NPC proteins (NPC1 and NPC2) are essential for sterol homeostasis in humans and yeasts, their functions in plant invasion by pathogenic fungi have remained unclear. In this study, we show that CoNPC1 and CoNPC2 play a critical role in intracellular sterol transport and that appropriate sterol distribution is required for membrane integrity and membrane curvature with actin assembly that leads to appressorium-mediated plant penetration and pathogenicity of C. orbiculare. Our findings suggest the importance of sterol distribution in fungal morphogenesis during plant infection.


Assuntos
Colletotrichum , Doença de Niemann-Pick Tipo C , Humanos , Actinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Colletotrichum/genética , Colletotrichum/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Esteróis/metabolismo , GTP Fosfo-Hidrolases/metabolismo
3.
Sci Rep ; 11(1): 19828, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615901

RESUMO

Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.


Assuntos
Resistência a Medicamentos/genética , Proteínas de Repetições Ricas em Leucina/genética , Organofosfatos/farmacologia , Praguicidas/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/genética , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Ligação Genética , Proteínas de Repetições Ricas em Leucina/metabolismo , Fenótipo , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sorghum/classificação
4.
Plant Cell Physiol ; 62(11): 1662-1675, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329461

RESUMO

Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas NLR/genética , Oryza/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Receptores de Reconhecimento de Padrão/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas NLR/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
5.
New Phytol ; 231(1): 416-431, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843063

RESUMO

The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are characteristic large tumors in which dark pigmented spores are formed. Here, we functionally characterized a novel core effector lep1 (late effector protein 1) which is highly expressed during tumor formation and contributes to virulence. We characterize lep1 mutants, localize the protein, determine phenotypic consequences upon deletion as well as constitutive expression, and analyze relationships with the repellent protein Rep1 and hydrophobins. In tumors, lep1 mutants show attenuated hyphal aggregation, fail to undergo massive late proliferation and produce only a few spores. Upon constitutive expression, cell aggregation is induced and the surface of filamentous colonies displays enhanced hydrophobicity. Lep1 is bound to the cell wall of biotrophic hyphae and associates with Rep1 when constitutively expressed in hyphae. We conclude that Lep1 acts as a novel kind of cell adhesin which functions together with other surface-active proteins to allow proliferation of diploid hyphae as well as for induction of the morphological changes associated with spore formation.


Assuntos
Hifas , Ustilago , Basidiomycota , Proteínas Fúngicas/genética , Doenças das Plantas , Tumores de Planta , Ustilago/genética , Zea mays
6.
New Phytol ; 222(4): 1909-1923, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715740

RESUMO

To breach the plant cuticle, many plant pathogenic fungi differentiate specialized infection structures (appressoria). In Colletotrichum orbiculare (cucumber anthracnose fungus), this differentiation requires unique proper G1 /S phase progression, regulated by two-component GTPase activating protein CoBub2/CoBfa1 and GTPase CoTem1. Since their homologues regulate mitotic exit, cytokinesis, or septum formation from yeasts to mammals, we asked whether the BUB2 function in G1 /S progression is specific to plant pathogenic fungi. Colletotrichum higginsianum and Magnaporthe oryzae were genetically analyzed to investigate conservation of BUB2 roles in cell cycle regulation, septum formation, and virulence. Expression profile of cobub2Δ was analyzed using a custom microarray. In bub2 mutants of both fungi, S phase initiation was earlier, and septum formation coordinated with a septation initiation network protein and contractile actin ring was impaired. Earlier G1 /S transition in cobub2Δ results in especially high expression of DNA replication genes and differing regulation of virulence-associated genes that encode proteins such as carbohydrate-active enzymes and small secreted proteins. The virulence of chbub2Δ and mobub2Δ was significantly reduced. Our evidence shows that BUB2 regulation of G1 /S transition and septum formation supports its specific requirement for appressorium development in plant pathogenic fungi.


Assuntos
Arabidopsis/microbiologia , Colletotrichum/citologia , Cucumis sativus/microbiologia , Fase G1 , Magnaporthe/citologia , Colletotrichum/genética , Colletotrichum/patogenicidade , Replicação do DNA/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Magnaporthe/genética , Magnaporthe/patogenicidade , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência/genética
7.
Nat Microbiol ; 4(2): 251-257, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510169

RESUMO

Plant-pathogenic fungi hijack their hosts by secreting effector proteins. Effectors serve to suppress plant immune responses and modulate the host metabolism to benefit the pathogen. Smut fungi are biotrophic pathogens that also parasitize important cereals, including maize1. Symptom development is usually restricted to the plant inflorescences. Ustilago maydis is an exception in its ability to cause tumours in both inflorescences and leaves of maize, and in inducing anthocyanin biosynthesis through the secreted Tin2 effector2,3. How the unique lifestyle of U. maydis has evolved remains to be elucidated. Here we show that Tin2 in U. maydis has been neofunctionalized. We functionally compared Tin2 effectors of U. maydis and the related smut Sporisorium reilianum, which results in symptoms only in the inflorescences of maize and fails to induce anthocyanin. We show that Tin2 effectors from both fungi target distinct paralogues of a maize protein kinase, leading to stabilization and inhibition, respectively. An ancestral Tin2 effector functionally replaced the virulence function of S. reilianum Tin2 but failed to induce anthocyanin, and was unable to substitute for Tin2 in U. maydis. This shows that Tin2 in U. maydis has acquired a specialized function, probably connected to the distinct pathogenic lifestyle of this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Antocianinas/biossíntese , Flores/metabolismo , Flores/microbiologia , Proteínas Fúngicas/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ustilaginales/genética , Ustilaginales/metabolismo , Ustilaginales/patogenicidade , Ustilaginales/fisiologia , Ustilago/genética , Ustilago/metabolismo , Ustilago/fisiologia , Virulência , Fatores de Virulência/genética , Zea mays
8.
Plant Cell ; 27(9): 2530-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320225

RESUMO

Morphogenesis in filamentous fungi depends on appropriate cell cycle progression. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare regulate G1/S progression via a two-component GAP, consisting of Budding-uninhibited-by-benomyl-2 (Bub2) and Byr-four-alike-1 (Bfa1) as well as its GTPase Termination-of-M-phase-1 (Tem1) to establish successful infection. In a random insertional mutagenesis screen of infection-related morphogenesis, we isolated a homolog of Saccharomyces cerevisiae, BUB2, which encodes a two-component Rab GAP protein that forms a GAP complex with Bfa1p and negatively regulates mitotic exit. Interestingly, disruption of either Co BUB2 or Co BFA1 resulted in earlier onset of nuclear division and decreased the time of phase progression from G1 to S during appressorium development. S. cerevisiae GTPase Tem1p is the downstream target of the Bub2p/Bfa1p GAP complex. Introducing the dominant-negative form of Co Tem1 into Co bub2Δ or Co bfa1Δ complemented the defect in G1/S progression, indicating that Co Bub2/Co Bfa1 regulates G1/S progression via Co Tem1. Based on a pathogenicity assay, we found that Co bub2Δ and Co bfa1Δ reduced pathogenesis by attenuating infection-related morphogenesis and enhancing the plant defense response. Thus, during appressorium development, C. orbiculare Bub2/Bfa1 regulates G1/S progression via Co Tem1, and this regulation is essential to establish plant infection.


Assuntos
Colletotrichum/patogenicidade , Cucumis sativus/microbiologia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Cucumis sativus/citologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos , Mutagênese Insercional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...